Search results for "Infinitely many solution"

showing 8 items of 8 documents

A sequence of positive solutions for sixth-order ordinary nonlinear differential problems

2021

Infinitely many solutions for a nonlinear sixth-order differential equation are obtained. The variational methods are adopted and an oscillating behaviour on the nonlinear term is required, avoiding any symmetry assumption.

SequenceDifferential equationSixth orderApplied MathematicsCritical pointsInfinitely many solutionsSymmetry (physics)Term (time)Nonlinear systemSixth-order equationsSettore MAT/05 - Analisi MatematicaQA1-939Applied mathematicsCritical points; Infinitely many solutions; Sixth-order equationsDifferential (infinitesimal)MathematicsMathematicsElectronic Journal of Qualitative Theory of Differential Equations
researchProduct

Infinitely many solutions for a perturbed nonlinear Navier boundary value problem involving the -biharmonic

2012

By using critical point theory, we establish the existence of infinitely many weak solutions for a class of elliptic Navier boundary value problems depending on two parameters and involving the p-biharmonic operator. © 2012 Elsevier Ltd. All rights reserved.

Nonlinear systemP-biharmonic type operatorsApplied MathematicsMathematical analysisCritical point theoryMathematics::Analysis of PDEsBiharmonic equationInfinitely many solutionNavier boundary value problemBoundary value problemAnalysisCritical point (mathematics)MathematicsNonlinear Analysis: Theory, Methods & Applications
researchProduct

Infinitely many periodic solutions for a second-order nonautonomous system

2003

The existence of infinitely many solutions for a second-order nonautonoumous system was investigated. Some multiplicity results for problem (P) under very different assumptions on the potential G were established. It was shown that infinitely many solutions follow from a variational principle by B. Ricceri.

Multiplicity resultsSecond-order nonautonomous systemApplied MathematicsMathematical analysisSecond order equationVariational methodAnalysiCritical point (mathematics)Non-autonomous systemCritical pointVariational principleApplied mathematicsInfinitely many solutionAnalysisMathematics
researchProduct

Multiple periodic solutions for Hamiltonian systems with not coercive potential

2010

Under an appropriate oscillating behavior of the nonlinear term, the existence of infinitely many periodic solutions for a class of second order Hamiltonian systems is established. Moreover, the existence of two non-trivial periodic solutions for Hamiltonian systems with not coercive potential is obtained, and the existence of three periodic solutions for Hamiltonian systems with coercive potential is pointed out. The approach is based on critical point theorems. © 2009 Elsevier Inc. All rights reserved.

Applied MathematicsMathematical analysisSecond order equationMultiple solutionNonlinear differential problemsCritical point (mathematics)Hamiltonian systemCritical pointNonlinear systemHamiltonian systemInfinitely many solutionAnalysisMathematicsMathematical physics
researchProduct

Infinitely many solutions for a perturbed p-Laplacian boundary value problem with impulsive effects

2017

In this paper, we deal with the existence of weak solutions for a perturbed p-Laplacian boundary value problem with impulsive effects. More precisely, the existence of an exactly determined open interval of positive parameters for which the problem admits infinitely many weak solutions is established. Our proofs are based on variational methods.

Control and OptimizationApplied MathematicsPerturbed p-Laplacian boundary value problemCritical point theory; Impulsive effects; Infinitely many solutions; Perturbed p-Laplacian boundary value problem; Variational methods; Analysis; Geometry and Topology; Control and Optimization; Applied MathematicsVariational methodAnalysiImpulsive effectsInfinitely many solutionsImpulsive effectVariational methodsCritical point theoryInfinitely many solutionGeometry and TopologyAnalysis
researchProduct

Infinitely many solutions to boundary value problem for fractional differential equations

2018

Variational methods and critical point theorems are used to discuss existence of infinitely many solutions to boundary value problem for fractional order differential equations where Riemann-Liouville fractional derivatives and Caputo fractional derivatives are used. An example is given to illustrate our result.

Caputo fractional derivativeApplied Mathematics010102 general mathematicscritical pointAnalysiRiemann-Liouville fractional derivativeinfinitely many solution01 natural sciencesvariational method010101 applied mathematicsfractional differential equationApplied mathematicsBoundary value problem0101 mathematicsFractional differentialAnalysisMathematics
researchProduct

Infinitely many weak solutions for a mixed boundary value system with (p_1,…,p_m)-Laplacian

2014

The aim of this paper is to prove the existence of infinitely many weak solu- tions for a mixed boundary value system with (p1, . . . , pm)-Laplacian. The approach is based on variational methods.

Pure mathematicscritical pointsinfinitely many solutionsApplied MathematicsMathematical analysisvariational methodsBoundary valuesCritical points variational methods infinitely many solutions p-Laplacian.$p$-laplacianSettore MAT/05 - Analisi MatematicaQA1-939Laplace operatorMathematicsMathematics
researchProduct

Infinitely many solutions for a mixed boundary value problem

2010

The existence of infinitely many solutions for a mixed boundary value problem is established. The approach is based on variational methods.

General MathematicsMathematical analysisFree boundary problemBoundary value problemMixed boundary conditionCritical points mixed boundary value problems infinitely many solutionsMathematics
researchProduct